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Background and Motivation

@ Communication: limited resource.
@ Delay: undesirable.

@ Interest: Minimize distortion.

Remote estimation




Background and motivation

@ Discrete-time processes:
O. C. Imer and T. Basar, 2010, G. M. Lipsa and N. C. Martins, 2011, J.
Wu, Q. Jia, K. H. Johansson and L. Shi, 2013, J. Chakravorty and A.
Mahajan, 2017 and A. Molin and S. Hirche, 2017.

@ Continuous-time processes:
M. Rabi, G. V. Moustakides, and J. S. Baras, 2012, K. Nar and T. Basar,
2014, Y. Sun, Y. Polyanskiy and E. Uysal-Biyikoglu, 2017, and T. Z. Ornee

and Y. Sun, 2019.



Background and motivation
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Digital communication: quantization matters!

Bitrate constraint




Introduce bitrate constraint to
remote estimation

Information theory: Control:

zero-delay Remote estimation,
distortion-rate tradeoffs Sampling.




 Notation.
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System Model

Xt (Ui, i) (Ui, i) Xt
~ encoder ~ channel ~ decoder >

e Encoder: 0<71 <1 <--- <7y <T (codeword-generating time)

o causal sampling policy: set-valued {A:}/ .

Tit1 = inf{t > 7, X; ¢ A:}.

U, Ua, ..., Uy € Z4 (codeword)
o causal compressing policy: Z-valued {£;}/,

Ui — fT,'
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@ Channel: noiseless, delay free

@ Decoding policy:

optimal

@ Free timing information.

e Time synchronization

e 7; can be random, but...

decoder

)%t — E[Xt’Ui,Ti, t < 7‘,'+1], t € [7’,‘,7‘,’+1)



System Model

Xt (UiaTi) (UiaTi) Xt
~ encoder ~ channel ~ decoder >

total number of

e const‘raint:/ codewords (random)

+E {Z,N:l E(U,-)} < R (bits per sec).

codeword length

@ Distortion measure:

1R [fOT(Xt — Xt)zdt] <d X, = E[X:|U', 7', t < Tit1], t € [7i,Tiz1)

e Real-time estimation

Penalizes delay _ _
e Causal information



Distortion-rate tradeoffs

Xt (UiaTi) (UiaTi) Xt
~ encoder ~ channel ~ decoder >

e (R,d, T) causal rate-constrained code :
a pair of enc-dec policies that satisfies (R, d) within time T.

e Distortion-rate function:
D(R) £ inf{d : 3(R, d, T) causal rate-constrained code}

@ Goal: find the enc policy that achieves the optimal tradeoff between
R and d.



Highlights of the problem setting

Xt (UiaTi) (UiaTi) Xt
~ encoder ~ channel ~ decoder >

@ Distortion measure: penalize delay

e Causality: constraining the enc-dec to use causal information, D(R) 1
Less delay.

@ Free timing information



Regularity conditions and assumptions

@ Regularity conditions on the input process:
@ Strong Markov property

@ Continuous paths

@ Mean-square residual error: X; — E[X;|X., 7] even, quasi-concave, etc.

e Examples: /|
@ Wiener process

@ Ornstein-Uhlenbeck processes

@ Lévy processes
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Regularity conditions and assumptions

@ Assumptions on the causal sampling policies:

0
Elrit1 —7i] <00, i=0,1,...,

FizEl : .
& [/ (Xt—E[Xt’{XTJ}.;:l,TI,t<T,+1])2dt < 0, IZO,].,

f

 Forall/=0,1,..., f. exists,

A is almost surely continuous in t on each of the intervals |7, Tj+1).
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Definition: The Sign-of-innovation (SOI) code

The SOI code for {X:}/_,:

@ Encoder
© Symmetric threshold sampling policy:

Ti+1 = inf{t > Tj @ Xi — E[Xt‘XTnTi] ¢ (_a(thiv i)v a(thia ’))}
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Definition: The Sign-of-innovation (SOI) code

The SOI code for {X;}/_y:

@ Encoder
@ Symmetric threshold sampling policy:

Ti+1 = inf{t > 10 Xy — E[Xt|X7-I.,7‘,'] ¢ (—a(t, T i), a(t, Ths I))}
@ SOl compressor:

. 1 X'r,- — E[XT/|XTj_17Ti—1] — 3(7',',7','_1, | — ].)
b 0 XT,' — ]E[XT,-’XT,-_UTi—l] = —3(7‘,',7','_17 | — ].)
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Definition: The Sign-of-innovation (SOI) code

The SOI code for {X;}/_y:

@ Decoder: at time 73,

X’T,' = (2U,' — 1)3(7',',7','_1, | — ].) -+ E[XT,"X’T,'_lj 7‘,'_1],
\ J
|

XT/ — E[Xﬂ ‘XTi—l ) 7-I'—l]

)%t = E[Xt|XTi,T,'], t & [T;,T;+1).

General form: X, = E[X:| U, 7', t < Tip1]
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Optimal rate-constrained code

@ Theorem (Structural).
Optimal rate-constrained code is the SOI code.

@ For time-homogeneous continuous Markov processes satisfying
regularity conditions, in the infinite time horizon:

Ti+1 = inf{t = T Xt — E[Xt|X'r,-a7_i] §§ (—a’(t — 7','), a’(t — 7','))}.
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Optimal rate-constrained code

o Calculate a'(t — ;)

 E[fy(Xe — E[X:]?)dt]
min
{&(t)}eso0: E[71]

E[n]=%

e Corollary:
o Wiener process: a = \/%, D(R) = &.

o OU process: a = \/Rl_l (%), D(R)=R-R (R (%))
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® a(t,7,i): optimal frequency-constrained sampling policy of {X;}/_,.

!

@ What is the frequency-constrained setting?
@ What is the optimal frequency-constrained sampling policy?

@ Why does that sampling policy 4+ the SOl compressor form the
optimal rate-constrained code?
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Distortion-frequency tradeoffs

Xt (Ui,Ti) (UiaTi) ><
-l encoder - channel - decoder >
o Encoder Sampler: transmit R-valued samples U; = X
o Decoding policy: X; = E[Xt| t < Tiv1)-
o Rateconstratht Frequency constraint: ] Tradeoffs
E[N] e (F,d, T) causal freq-constrained code
——— < F (samples per sec) _

T
. ] 1 T = \o e Distortion-frequency function:
o Distortion measure: TE [fo (Xt - Xt) dt] <d. D(F) 2 inf{d : 3 (F,d, T) causal freq-constrained code}.

_
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Optimal freqg.-constrained sampling policy

@ [heorem

For a class of continuous Markov processes satisfying regularity conditions:

Ti+1 = inf{t = § A — IE:[)<t|)<’ri>7_i] §é (—a(t,T,', ’.)7 a(taTiv ’))}
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Optimal freqg.-constrained sampling policy

@ Proof idea:

For any causal sampling policy {A:}]_,, there exists a symmetric
threshold sampling policy,

- E[NT] = E[NT],
Sampling policy Ny 1 ) "N / . Symmetric
Tit _ Tiy1 - threshold
LA E|) / (Xe — Xe)?dt| > E [ > / (X: — X])?dt solicy
| =0 VT | =07 Ti

@ Majorization — inequality

@ Real induction — the statement holds on an interval. .



Optimal freqg.-constrained sampling policy

@ What's new?

@ A wider class of continuous-time stochastic processes.

o Wiener process (M. Rabi et al., 2012, Nar and Basar, 2014, Sun et al.
2017)

e Ornstein-Uhlenbeck processes (M. Rabi et al., 2012, Ornee and Sun,
2019.)

@ Prior literature ignored the implied knowledge that “the next sample
has not arrived” in the decoding policy.

General form: ]E[Xt\{XTj,q}J’::l,.

l Confirms the conjecture.

)—<t = E[Xt|XTI.,T,'], t © [7‘,',7','_|_1).
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@ What is the frequency-constrained setting?

@ What is the optimal frequency-constrained sampling policy?

@ Why does that sampling policy + the SOl compressor form the
optimal rate-constrained code?
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From freq. constraint to rate constraint

e Converse:
Distortion-rate function (R) > Distortion-freq. function (F = R).

@ Achievability:
Optimal freq.-const. sampling + SOl compressor

N

achieves the lower bound
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Ssummary

@ Introduce a bitrate constraint to remote estimation problems.

@ Optimal frequency-constrained sampling policy is a symmetric
threshold sampling policy.

@ Optimal rate-constrained code is an SOI code.
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Open problems

Random channel delay?

o The SOI code is optimal for the Wiener process + fixed delay. (Guo
and Kostina, 2019).

Noisy channel?
o E.g. BEC, BSC, AWGN.

Multi-dimensional stochastic processes?
o Freg-constrained, multi-dimensional Wiener (Nar and Basar, 2014)

Partially observed stochastic process?
e Kalman-filter related.

Compression of the stopping times 71, 7,... ?
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